World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Probability Distributions of Landslide Volumes : Volume 16, Issue 2 (11/03/2009)

By Brunetti, M. T.

Click here to view

Book Id: WPLBN0003987035
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Probability Distributions of Landslide Volumes : Volume 16, Issue 2 (11/03/2009)  
Author: Brunetti, M. T.
Volume: Vol. 16, Issue 2
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Rossi, M., Guzzetti, F., & Brunetti, M. T. (2009). Probability Distributions of Landslide Volumes : Volume 16, Issue 2 (11/03/2009). Retrieved from

Description: Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, Perugia, via Madonna Alta 126, 06128 Perugia, Italy. We examine 19 datasets with measurements of landslide volume, VL, for sub-aerial, submarine, and extraterrestrial mass movements. Individual datasets include from 17 to 1019 landslides of different types, including rock fall, rock slide, rock avalanche, soil slide, slide, and debris flow, with individual landslide volumes ranging over 10−4 m3VL≤1013 m3. We determine the probability density of landslide volumes, p(VL), using kernel density estimation. Each landslide dataset exhibits heavy tailed (self-similar) behaviour for their frequency-size distributions, p(VL) as a function of VL, for failures exceeding different threshold volumes, VL*, for each dataset. These non-cumulative heavy-tailed distributions for each dataset are negative power-laws, with exponents 1.0≤Β≤1.9, and averaging Β≈1.3. The scaling behaviour of VL for the ensemble of the 19 datasets is over 17 orders of magnitude, and is independent of lithological characteristics, morphological settings, triggering mechanisms, length of period and extent of the area covered by the datasets, presence or lack of water in the failed materials, and magnitude of gravitational fields. We argue that the statistics of landslide volume is conditioned primarily on the geometrical properties of the slope or rock mass where failures occur. Differences in the values of the scaling exponents reflect the primary landslide types, with rock falls exhibiting a smaller scaling exponent (1.1≤Β≤1.4) than slides and soil slides (1.5≤Β≤1.9). We argue that the difference is a consequence of the disparity in the mechanics of rock falls and slides.

Probability distributions of landslide volumes

Antonini, G., Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., and Reichenbach, P.: Surface deposits and landslide inventory map of the area affected by the 1997 Umbria-Marche earthquakes, Boll. Soc. Geol. Ital., VS-1, 843–853, 2002.; Barnard, P. L., Owen, L. A., Sharma, M. C., and Finkel, R. C.: Natural and human-induced landsliding in the Garhwal Himalaya of northern India, Geomorphology, 40, 21–35, 2001.; Baum, R. L., Harp, E. L., and Hultman, W. A.: Map showing recent and historic landslide activity on coastal bluffs of Puget Sound between Shilshole Bay and Everett, Washington, US Geological Survey Miscellaneous Field Studies Map MF-2346, 2000.; Brardinoni, F. and Church, M.: Representing the landslide magnitude-frequency relation: Capilano River basin, British Columbia, Earth Surf. Proc. Land., 29(1), 115–124, 2004.; Cello, G. and Malamud, B. D. (Eds.): Fractal Analysis for Natural Hazards. Geological Society, London, Special Publications, 261, 172 pp., 2006.; Cruden, D. M. and Varnes, D. J.: Landslide types and processes, in: Landslides, Investigation and Mitigation, edited by: Turner, A. K. and Schuster, R. L., Transportation Research Board Special Report 247, Washington, D.C., 36–75, 1996.; Dai, F. C. and Lee, C. F.: Frequency-volume relation and prediction of rainfall-induced landslides, Eng. Geol., 59, 253–266, 2001.; Dussauge, C., Grasso, J. R., and Helmstetter, A.: Statistical analysis of rockfall volume distributions: implications for rockfall dynamics, J. Geophys. Res., 108(B6), 2286, doi:10.1029/2001JB000650, 2003.; Dussauge-Peisser, C., Helmstetter, A., Grasso, J.-R., Hantz, D., Desvarreux, P., Jeannin, M., and Giraud, A.: Probabilistic approach to rock fall hazard assessment: potential of historical data analysis, Nat. Hazards Earth Syst. Sci., 2, 15–26, 2002.; Dykes, A. P. and Warburton, J.: Characteristics of the Shetland Islands (UK) peat slides of 19 September 2003, Landslides, 5(2), 213–226, 2008.; Erismann, T. H. and Abele, G.: Dynamics of Rockslides and Rockfalls, Springer, 316 pp., 2001.; Fujii, Y.: Frequency distribution of landslides caused by heavy rainfall, J. Seismol. Soc. Japan, 22, 244–247, 1969.; Gardner, J. S.: Rockfall frequency and distribution in the Highwood Pass area, Canadian Rocky Mountain, Z. Geomorphol., 27(3), 311–324, 1983.; Gardner, J. S.: Rockfall: a geomorphic process in high mountain terrain, The Albertan Geogr., 6, 15–20, 1970.; Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., and Reichenbach, P.: Distribution of landslides in the Upper Tiber River basin, Central Italy, Geomorphology, 96, 105–122, 2008.; Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Rossi, M., and Valigi, D.: Landslide volumes and landslide mobilization rates in Umbria, central Italy, Earth Planet. Sci. Lett., 279, 222–229, doi:10.1016/j.epsl.2009.01.005, 2009.; Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., and Cardinali, M.: Landslide hazard assessment in the Collazzone area, Umbria, Central Italy, Nat. Hazards Earth Syst. Sci., 6, 115–131, 2006.; Guzzetti, F., Malamud, B. D., Turcotte, D. L., and Reichenbach, P.: Power-law correlations of landslide areas in Central Italy, Earth Planet. Sci. Lett., 195, 169–183, 2002.; Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F.: Probabilistic landslide hazard assessment at the basin scale, Geomorphology, 72, 272–299, 2005.; Guzzetti, F., Reichenbach, P., and Ghigi, S.: Rockfall hazard and risk assessment in the Nera River Valley, Umbria Region, central Italy, Environ. Manage., 34(2), 191–208, 2004.; Guzzetti, F., Reichenbach, P., and Wieczorek, G. F.: Rockfall hazard and risk assessment in the Yosemite Valley, California, USA, Nat. Hazards Earth Syst. Sci., 3, 491–503, 2003.; Hampton, M. A., Lee, H. L., and Locat, J.: Submarine landslides, Rev. Geophys., 34, 33–59, 1996.; Guzzetti, F. and Tonelli, G.: Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landsli


Click To View

Additional Books

  • Avalanches in Bi-directional Sandpile an... (by )
  • Nonstationary Time Series Prediction Com... (by )
  • Global Terrestrial Water Storage Connect... (by )
  • Convex and Concave Types of Second Baroc... (by )
  • Oscillating Forcings and New Regimes in ... (by )
  • Stability and Nonlinear Regimes of Flow ... (by )
  • Incidence and Reflection of Internal Wav... (by )
  • One-dimensional Modelling of Upper Ocean... (by )
  • Flow Partitioning and Unstable Divergenc... (by )
  • Dromion Solutions for Nonlinear Electron... (by )
  • Mapping Soil Fractal Dimension in Agricu... (by )
  • Predictability of the Monthly North Atla... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Fair are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.