World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Stochastic Heterogeneity Mapping Around a Mediterranean Salt Lens : Volume 6, Issue 1 (31/03/2010)

By Buffett, G. G.

Click here to view

Book Id: WPLBN0004020450
Format Type: PDF Article :
File Size: Pages 7
Reproduction Date: 2015

Title: Stochastic Heterogeneity Mapping Around a Mediterranean Salt Lens : Volume 6, Issue 1 (31/03/2010)  
Author: Buffett, G. G.
Volume: Vol. 6, Issue 1
Language: English
Subject: Science, Ocean, Science
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2010
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Klaeschen, D., Sallarès, V., Biescas, B., Carbonell, R., Hurich, C. A., Vsemirnova, E. A.,...Buffett, G. G. (2010). Stochastic Heterogeneity Mapping Around a Mediterranean Salt Lens : Volume 6, Issue 1 (31/03/2010). Retrieved from http://www.worldebookfair.org/


Description
Description: Institut de Ciències de la Terra Jaume Almera, C. Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain. We present the first application of Stochastic Heterogeneity Mapping based on the band-limited von Kármán function to a seismic reflection stack of a Mediterranean water eddy (meddy), a large salt lens of Mediterranean water. This process extracts two stochastic parameters directly from the reflectivity field of the seismic data: the Hurst number, which ranges from 0 to 1, and the correlation length (scale length). Lower Hurst numbers represent a richer range of high wavenumbers and correspond to a broader range of heterogeneity in reflection events. The Hurst number estimate for the top of the meddy (0.39) compares well with recent theoretical work, which required values between 0.25 and 0.5 to model internal wave surfaces in open ocean conditions based on simulating a Garrett-Munk spectrum (GM76) slope of −2. The scale lengths obtained do not fit as well to seismic reflection events as those used in other studies to model internal waves. We suggest two explanations for this discrepancy: (1) due to the fact that the stochastic parameters are derived from the reflectivity field rather than the impedance field the estimated scale lengths may be underestimated, as has been reported; and (2) because the meddy seismic image is a two-dimensional slice of a complex and dynamic three-dimensional object, the derived scale lengths are biased to the direction of flow. Nonetheless, varying stochastic parameters, which correspond to different spectral slopes in the Garrett-Munk spectrum (horizontal wavenumber spectrum), can provide an estimate of different internal wave scales from seismic data alone. We hence introduce Stochastic Heterogeneity Mapping as a novel tool in physical oceanography.

Summary
Stochastic Heterogeneity Mapping around a Mediterranean salt lens

Excerpt
Armi, L. D., Hebert, D., Oakey, N., Price, J. F., Richardson, P. L., Rossby, H. T., and Ruddick, B.: Two years in the life of a Mediterranean salt lens, J. Phys. Oceanogr., 19, 354–370, 1989.; Bashmachnikov, I., Machín, F., Mendonça, A., and Martins, A.: In situ and remote sensing signature of meddies east of the mid-Atlantic ridge, J. Geophys. Res., 114, C05018, doi:10.1029/2008JC005032, 2009.; Batchelor, G. K.: Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity, J. Fluid Mech., 5, 113–133, 1959.; Biescas, B., Sallarès, V., Pelegrí, J. L., Machín, F., Carbonell, R., Buffett, G. G., Dañobeitia, J. J., and Calahorrano, A.: Imaging meddy finestructure using multichannel seismic reflection data, Geophys. Res. Lett., 35, L11609, doi:10.1029/2008GL033971, 2008.; Bower, A. S., Armi, L., and Ambar, I.: Lagrangian Observations of Meddy Formation during A Mediterranean Undercurrent Seeding Experiment, J. Phys. Oceanogr., 27, 2545–2575, 1997.; Bower, A. S., Serra, N., and Ambar, I.: Structure of the Mediterranean Undercurrent and Mediterranean Water spreading around the southwestern Iberian Peninsula, J. Geophys. Res., 107(C10), 3161, doi:10.1029/2001JC001007, 2002.; Buffett, G. G., Biescas, B., Pelegrí, J. L., Machín, F., Sallarès, V., Carbonell, R., Klaeschen, D., and Hobbs, R. W.: Seismic reflection along the path of the Mediterranean Undercurrent, Cont. Shelf Res., 29, 1848–1860, doi:10.1016/j.csr.2009.05.017, 2009.; Carpentier, S.: On the estimation of stochastic parameters from deep seismic reflection data and its use in delineating lower crustal structure, PhD thesis, Universiteit Utrecht, 2007.; Garrett, C. and Munk, W.: Space-Time Scales of Internal Waves: A Progress Report, J. Geophys. Res., 80(3), 291–297, 1975.; Carpentier, S. and Roy-Chowdhury, K.: Underestimation of scale lengths in stochastic fields and their seismic response: a quantification exercise, Geophys. J. Int., 169, 547–562, 2007.; Carpentier, S. F. A. and Roy-Chowdhury, K.: Conservation of lateral stochastic structure of a medium in its simulated seismic response, J. Geophys. Res., 114, B10314, doi:10.1029/2008JB006123, 2009a.; Carpentier, S. F. A., Roy-Chowdhury, K., Stephenson, R. A., and Stovba, S.: Delineating tectonic units beneath the Donbas Fold Belt using scale lengths estimated from DOBRE 2000/2001 deep reflection data, J. Geophys. Res., 114, B10315, doi:10.1029/2008JB006124, 2009b.; Garrett, C.: Internal tides and ocean mixing, Science, 301, 1858–1859, 2003.; Goff, J. A., Holliger, K., and Levander, A. R.: Modal fields: A new method for characterization of random seismic velocity heterogeneity, Geophys. Res. Lett, 21(6), 493–496, 1994.; Goff, J. A. and Jordan, T. H.: Stochastic modeling of seafloor-morphology: Inversion of seabeam data for second order statistics, J. Geophys. Res., 93(6), 13589–13608, 1988.; Hobbs, R. W., Klaeschen, D., Sallarès, V., Vsemirnova, E., and Papenberg, C.: Effect of seismic source bandwidth on reflection sections to image water structure, Geophys. Res. Lett., 36, L00D08, doi:10.1029/2009GL040215, 2009.; Holbrook, W. S. and Fer, I.: Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett., 32, L15604, doi:10.1029/2005GL023733, 2005.; Holbrook, W. S., Páramo, P., Pearse, S., and Schmitt, R. W.: Thermohaline fine structure in an oceanographic front from seismic reflection profiling, Science, 301, 821–824, 2003.; Holliger, K., Levander, A. R., Carbonell, R., and Hobbs, R.: Some attributes of wave fields scattered from ivrea-type lower crust, Tectonophysics, 232, 267–279, 1994.; Hurich, C. A. and Kocurko, A.: Statistical approaches to interpretation of seismic reflection data, Tectonophysics, 329, 251–267, 2000.; Klaeschen, D., Hobbs, R. W., Krahmann, G., Papenberg, C., and Vsemirnova, E.: Estimating movement of reflectors in the water column using Seismic Oceanography, Geophys. Res. Lett., 36, L00D

 

Click To View

Additional Books


  • Joint Use of Satellite and In-situ Data ... (by )
  • Camcat: an Oil Spill Forecasting System ... (by )
  • Wave-turbulence Scaling in the Ocean Mix... (by )
  • A 20-year Reanalysis Experiment in the B... (by )
  • Improvement to the Phytodoas Method for ... (by )
  • An Operational Model for the West Iberia... (by )
  • Temporal and Spatial Distribution of the... (by )
  • Retroflection from a Double-slanted Coas... (by )
  • Frequency- or Amplitude-dependent Effect... (by )
  • Snapshot Observation of Physical Structu... (by )
  • Development of Black Sea Nowcasting and ... (by )
  • Numerical Implementation and Oceanograph... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Fair are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.